\(\int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^4} \, dx\) [2987]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 174 \[ \int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^4} \, dx=\frac {4 a^5 \left (a+b \sqrt {\frac {c}{x}}\right )^{3/2}}{3 b^6 c^3}-\frac {4 a^4 \left (a+b \sqrt {\frac {c}{x}}\right )^{5/2}}{b^6 c^3}+\frac {40 a^3 \left (a+b \sqrt {\frac {c}{x}}\right )^{7/2}}{7 b^6 c^3}-\frac {40 a^2 \left (a+b \sqrt {\frac {c}{x}}\right )^{9/2}}{9 b^6 c^3}+\frac {20 a \left (a+b \sqrt {\frac {c}{x}}\right )^{11/2}}{11 b^6 c^3}-\frac {4 \left (a+b \sqrt {\frac {c}{x}}\right )^{13/2}}{13 b^6 c^3} \]

[Out]

4/3*a^5*(a+b*(c/x)^(1/2))^(3/2)/b^6/c^3-4*a^4*(a+b*(c/x)^(1/2))^(5/2)/b^6/c^3+40/7*a^3*(a+b*(c/x)^(1/2))^(7/2)
/b^6/c^3-40/9*a^2*(a+b*(c/x)^(1/2))^(9/2)/b^6/c^3+20/11*a*(a+b*(c/x)^(1/2))^(11/2)/b^6/c^3-4/13*(a+b*(c/x)^(1/
2))^(13/2)/b^6/c^3

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {376, 272, 45} \[ \int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^4} \, dx=\frac {4 a^5 \left (a+b \sqrt {\frac {c}{x}}\right )^{3/2}}{3 b^6 c^3}-\frac {4 a^4 \left (a+b \sqrt {\frac {c}{x}}\right )^{5/2}}{b^6 c^3}+\frac {40 a^3 \left (a+b \sqrt {\frac {c}{x}}\right )^{7/2}}{7 b^6 c^3}-\frac {40 a^2 \left (a+b \sqrt {\frac {c}{x}}\right )^{9/2}}{9 b^6 c^3}-\frac {4 \left (a+b \sqrt {\frac {c}{x}}\right )^{13/2}}{13 b^6 c^3}+\frac {20 a \left (a+b \sqrt {\frac {c}{x}}\right )^{11/2}}{11 b^6 c^3} \]

[In]

Int[Sqrt[a + b*Sqrt[c/x]]/x^4,x]

[Out]

(4*a^5*(a + b*Sqrt[c/x])^(3/2))/(3*b^6*c^3) - (4*a^4*(a + b*Sqrt[c/x])^(5/2))/(b^6*c^3) + (40*a^3*(a + b*Sqrt[
c/x])^(7/2))/(7*b^6*c^3) - (40*a^2*(a + b*Sqrt[c/x])^(9/2))/(9*b^6*c^3) + (20*a*(a + b*Sqrt[c/x])^(11/2))/(11*
b^6*c^3) - (4*(a + b*Sqrt[c/x])^(13/2))/(13*b^6*c^3)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 376

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbol] :> With[{k = Denominator[n]}, Su
bst[Int[(d*x)^m*(a + b*c^n*x^(n*q))^p, x], x^(1/k), (c*x^q)^(1/k)/(c^(1/k)*(x^(1/k))^(q - 1))]] /; FreeQ[{a, b
, c, d, m, p, q}, x] && FractionQ[n]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {\sqrt {a+\frac {b \sqrt {c}}{\sqrt {x}}}}{x^4} \, dx,\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right ) \\ & = -\text {Subst}\left (2 \text {Subst}\left (\int x^5 \sqrt {a+b \sqrt {c} x} \, dx,x,\frac {1}{\sqrt {x}}\right ),\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right ) \\ & = -\text {Subst}\left (2 \text {Subst}\left (\int \left (-\frac {a^5 \sqrt {a+b \sqrt {c} x}}{b^5 c^{5/2}}+\frac {5 a^4 \left (a+b \sqrt {c} x\right )^{3/2}}{b^5 c^{5/2}}-\frac {10 a^3 \left (a+b \sqrt {c} x\right )^{5/2}}{b^5 c^{5/2}}+\frac {10 a^2 \left (a+b \sqrt {c} x\right )^{7/2}}{b^5 c^{5/2}}-\frac {5 a \left (a+b \sqrt {c} x\right )^{9/2}}{b^5 c^{5/2}}+\frac {\left (a+b \sqrt {c} x\right )^{11/2}}{b^5 c^{5/2}}\right ) \, dx,x,\frac {1}{\sqrt {x}}\right ),\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right ) \\ & = \frac {4 a^5 \left (a+b \sqrt {\frac {c}{x}}\right )^{3/2}}{3 b^6 c^3}-\frac {4 a^4 \left (a+b \sqrt {\frac {c}{x}}\right )^{5/2}}{b^6 c^3}+\frac {40 a^3 \left (a+b \sqrt {\frac {c}{x}}\right )^{7/2}}{7 b^6 c^3}-\frac {40 a^2 \left (a+b \sqrt {\frac {c}{x}}\right )^{9/2}}{9 b^6 c^3}+\frac {20 a \left (a+b \sqrt {\frac {c}{x}}\right )^{11/2}}{11 b^6 c^3}-\frac {4 \left (a+b \sqrt {\frac {c}{x}}\right )^{13/2}}{13 b^6 c^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.59 \[ \int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^4} \, dx=-\frac {4 \left (a+b \sqrt {\frac {c}{x}}\right )^{3/2} \left (-256 a^5+384 a^4 b \sqrt {\frac {c}{x}}+560 a^2 b^3 \left (\frac {c}{x}\right )^{3/2}+693 b^5 \left (\frac {c}{x}\right )^{5/2}-\frac {630 a b^4 c^2}{x^2}-\frac {480 a^3 b^2 c}{x}\right )}{9009 b^6 c^3} \]

[In]

Integrate[Sqrt[a + b*Sqrt[c/x]]/x^4,x]

[Out]

(-4*(a + b*Sqrt[c/x])^(3/2)*(-256*a^5 + 384*a^4*b*Sqrt[c/x] + 560*a^2*b^3*(c/x)^(3/2) + 693*b^5*(c/x)^(5/2) -
(630*a*b^4*c^2)/x^2 - (480*a^3*b^2*c)/x))/(9009*b^6*c^3)

Maple [A] (verified)

Time = 4.01 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.76

method result size
default \(-\frac {4 \sqrt {a +b \sqrt {\frac {c}{x}}}\, \left (a x +b \sqrt {\frac {c}{x}}\, x \right )^{\frac {3}{2}} \left (693 x^{2} \left (\frac {c}{x}\right )^{\frac {5}{2}} b^{5}+560 x^{2} \left (\frac {c}{x}\right )^{\frac {3}{2}} a^{2} b^{3}+384 x^{2} \sqrt {\frac {c}{x}}\, a^{4} b -256 a^{5} x^{2}-480 c x \,a^{3} b^{2}-630 c^{2} a \,b^{4}\right )}{9009 c^{3} x^{3} \sqrt {x \left (a +b \sqrt {\frac {c}{x}}\right )}\, b^{6}}\) \(133\)

[In]

int((a+b*(c/x)^(1/2))^(1/2)/x^4,x,method=_RETURNVERBOSE)

[Out]

-4/9009*(a+b*(c/x)^(1/2))^(1/2)*(a*x+b*(c/x)^(1/2)*x)^(3/2)*(693*x^2*(c/x)^(5/2)*b^5+560*x^2*(c/x)^(3/2)*a^2*b
^3+384*x^2*(c/x)^(1/2)*a^4*b-256*a^5*x^2-480*c*x*a^3*b^2-630*c^2*a*b^4)/c^3/x^3/(x*(a+b*(c/x)^(1/2)))^(1/2)/b^
6

Fricas [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.60 \[ \int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^4} \, dx=-\frac {4 \, {\left (693 \, b^{6} c^{3} - 70 \, a^{2} b^{4} c^{2} x - 96 \, a^{4} b^{2} c x^{2} - 256 \, a^{6} x^{3} + {\left (63 \, a b^{5} c^{2} x + 80 \, a^{3} b^{3} c x^{2} + 128 \, a^{5} b x^{3}\right )} \sqrt {\frac {c}{x}}\right )} \sqrt {b \sqrt {\frac {c}{x}} + a}}{9009 \, b^{6} c^{3} x^{3}} \]

[In]

integrate((a+b*(c/x)^(1/2))^(1/2)/x^4,x, algorithm="fricas")

[Out]

-4/9009*(693*b^6*c^3 - 70*a^2*b^4*c^2*x - 96*a^4*b^2*c*x^2 - 256*a^6*x^3 + (63*a*b^5*c^2*x + 80*a^3*b^3*c*x^2
+ 128*a^5*b*x^3)*sqrt(c/x))*sqrt(b*sqrt(c/x) + a)/(b^6*c^3*x^3)

Sympy [F]

\[ \int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^4} \, dx=\int \frac {\sqrt {a + b \sqrt {\frac {c}{x}}}}{x^{4}}\, dx \]

[In]

integrate((a+b*(c/x)**(1/2))**(1/2)/x**4,x)

[Out]

Integral(sqrt(a + b*sqrt(c/x))/x**4, x)

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.73 \[ \int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^4} \, dx=-\frac {4 \, {\left (\frac {693 \, {\left (b \sqrt {\frac {c}{x}} + a\right )}^{\frac {13}{2}}}{b^{6}} - \frac {4095 \, {\left (b \sqrt {\frac {c}{x}} + a\right )}^{\frac {11}{2}} a}{b^{6}} + \frac {10010 \, {\left (b \sqrt {\frac {c}{x}} + a\right )}^{\frac {9}{2}} a^{2}}{b^{6}} - \frac {12870 \, {\left (b \sqrt {\frac {c}{x}} + a\right )}^{\frac {7}{2}} a^{3}}{b^{6}} + \frac {9009 \, {\left (b \sqrt {\frac {c}{x}} + a\right )}^{\frac {5}{2}} a^{4}}{b^{6}} - \frac {3003 \, {\left (b \sqrt {\frac {c}{x}} + a\right )}^{\frac {3}{2}} a^{5}}{b^{6}}\right )}}{9009 \, c^{3}} \]

[In]

integrate((a+b*(c/x)^(1/2))^(1/2)/x^4,x, algorithm="maxima")

[Out]

-4/9009*(693*(b*sqrt(c/x) + a)^(13/2)/b^6 - 4095*(b*sqrt(c/x) + a)^(11/2)*a/b^6 + 10010*(b*sqrt(c/x) + a)^(9/2
)*a^2/b^6 - 12870*(b*sqrt(c/x) + a)^(7/2)*a^3/b^6 + 9009*(b*sqrt(c/x) + a)^(5/2)*a^4/b^6 - 3003*(b*sqrt(c/x) +
 a)^(3/2)*a^5/b^6)/c^3

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^4} \, dx=\text {Timed out} \]

[In]

integrate((a+b*(c/x)^(1/2))^(1/2)/x^4,x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^4} \, dx=\int \frac {\sqrt {a+b\,\sqrt {\frac {c}{x}}}}{x^4} \,d x \]

[In]

int((a + b*(c/x)^(1/2))^(1/2)/x^4,x)

[Out]

int((a + b*(c/x)^(1/2))^(1/2)/x^4, x)